Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Infect Dis ; 122: 802-810, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1983201

ABSTRACT

OBJECTIVES: This study used the long-short-term memory (LSTM) artificial intelligence method to model multiple time points of clinical laboratory data, along with demographics and comorbidities, to predict hospital-acquired acute kidney injury (AKI) onset in patients with COVID-19. METHODS: Montefiore Health System data consisted of 1982 AKI and 2857 non-AKI (NAKI) hospitalized patients with COVID-19, and Stony Brook Hospital validation data consisted of 308 AKI and 721 NAKI hospitalized patients with COVID-19. Demographic, comorbidities, and longitudinal (3 days before AKI onset) laboratory tests were analyzed. LSTM was used to predict AKI with fivefold cross-validation (80%/20% for training/validation). RESULTS: The top predictors of AKI onset were glomerular filtration rate, lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, and C-reactive protein. Longitudinal data yielded marked improvement in prediction accuracy over individual time points. The inclusion of comorbidities and demographics further improves prediction accuracy. The best model yielded an area under the curve, accuracy, sensitivity, and specificity to be 0.965 ± 0.003, 89.57 ± 1.64%, 0.95 ± 0.03, and 0.84 ± 0.05, respectively, for the Montefiore validation dataset, and 0.86 ± 0.01, 83.66 ± 2.53%, 0.66 ± 0.10, 0.89 ± 0.03, respectively, for the Stony Brook Hospital validation dataset. CONCLUSION: LSTM model of longitudinal clinical data accurately predicted AKI onset in patients with COVID-19. This approach could help heighten awareness of AKI complications and identify patients for early interventions to prevent long-term renal complications.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Artificial Intelligence , COVID-19/diagnosis , Humans , Machine Learning , Memory, Short-Term , Prognosis , Retrospective Studies , Risk Factors
2.
J Am Coll Emerg Physicians Open ; 1(6): 1364-1373, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1898687

ABSTRACT

Objective: The large number of clinical variables associated with coronavirus disease 2019 (COVID-19) infection makes it challenging for frontline physicians to effectively triage COVID-19 patients during the pandemic. This study aimed to develop an efficient deep-learning artificial intelligence algorithm to identify top clinical variable predictors and derive a risk stratification score system to help clinicians triage COVID-19 patients. Methods: This retrospective study consisted of 181 hospitalized patients with confirmed COVID-19 infection from January 29, 2020 to March 21, 2020 from a major hospital in Wuhan, China. The primary outcome was mortality. Demographics, comorbidities, vital signs, symptoms, and laboratory tests were collected at initial presentation, totaling 78 clinical variables. A deep-learning algorithm and a risk stratification score system were developed to predict mortality. Data were split into 85% training and 15% testing. Prediction performance was compared with those using COVID-19 severity score, CURB-65 score, and pneumonia severity index (PSI). Results: Of the 181 COVID-19 patients, 39 expired and 142 survived. Five top predictors of mortality were D-dimer, O2 Index, neutrophil:lymphocyte ratio, C-reactive protein, and lactate dehydrogenase. The top 5 predictors and the resultant risk score yielded, respectively, an area under curve (AUC) of 0.968 (95% CI = 0.87-1.0) and 0.954 (95% CI = 0.80-0.99) for the testing dataset. Our models outperformed COVID-19 severity score (AUC = 0.756), CURB-65 score (AUC = 0.671), and PSI (AUC = 0.838). The mortality rates for our risk stratification scores (0-5) were 0%, 0%, 6.7%, 18.2%, 67.7%, and 83.3%, respectively. Conclusions: Deep-learning prediction model and the resultant risk stratification score may prove useful in clinical decisionmaking under time-sensitive and resource-constrained environment.

3.
PeerJ ; 8: e10337, 2020.
Article in English | MEDLINE | ID: covidwho-914775

ABSTRACT

BACKGROUND: This study aimed to develop a deep-learning model and a risk-score system using clinical variables to predict intensive care unit (ICU) admission and in-hospital mortality in COVID-19 patients. METHODS: This retrospective study consisted of 5,766 persons-under-investigation for COVID-19 between 7 February 2020 and 4 May 2020. Demographics, chronic comorbidities, vital signs, symptoms and laboratory tests at admission were collected. A deep neural network model and a risk-score system were constructed to predict ICU admission and in-hospital mortality. Prediction performance used the receiver operating characteristic area under the curve (AUC). RESULTS: The top ICU predictors were procalcitonin, lactate dehydrogenase, C-reactive protein, ferritin and oxygen saturation. The top mortality predictors were age, lactate dehydrogenase, procalcitonin, cardiac troponin, C-reactive protein and oxygen saturation. Age and troponin were unique top predictors for mortality but not ICU admission. The deep-learning model predicted ICU admission and mortality with an AUC of 0.780 (95% CI [0.760-0.785]) and 0.844 (95% CI [0.839-0.848]), respectively. The corresponding risk scores yielded an AUC of 0.728 (95% CI [0.726-0.729]) and 0.848 (95% CI [0.847-0.849]), respectively. CONCLUSIONS: Deep learning and the resultant risk score have the potential to provide frontline physicians with quantitative tools to stratify patients more effectively in time-sensitive and resource-constrained circumstances.

4.
PeerJ ; 8: e10309, 2020.
Article in English | MEDLINE | ID: covidwho-914774

ABSTRACT

Portable chest X-ray (pCXR) has become an indispensable tool in the management of Coronavirus Disease 2019 (COVID-19) lung infection. This study employed deep-learning convolutional neural networks to classify COVID-19 lung infections on pCXR from normal and related lung infections to potentially enable more timely and accurate diagnosis. This retrospect study employed deep-learning convolutional neural network (CNN) with transfer learning to classify based on pCXRs COVID-19 pneumonia (N = 455) on pCXR from normal (N = 532), bacterial pneumonia (N = 492), and non-COVID viral pneumonia (N = 552). The data was randomly split into 75% training and 25% testing, randomly. A five-fold cross-validation was used for the testing set separately. Performance was evaluated using receiver-operating curve analysis. Comparison was made with CNN operated on the whole pCXR and segmented lungs. CNN accurately classified COVID-19 pCXR from those of normal, bacterial pneumonia, and non-COVID-19 viral pneumonia patients in a multiclass model. The overall sensitivity, specificity, accuracy, and AUC were 0.79, 0.93, and 0.79, 0.85 respectively (whole pCXR), and were 0.91, 0.93, 0.88, and 0.89 (CXR of segmented lung). The performance was generally better using segmented lungs. Heatmaps showed that CNN accurately localized areas of hazy appearance, ground glass opacity and/or consolidation on the pCXR. Deep-learning convolutional neural network with transfer learning accurately classifies COVID-19 on portable chest X-ray against normal, bacterial pneumonia or non-COVID viral pneumonia. This approach has the potential to help radiologists and frontline physicians by providing more timely and accurate diagnosis.

5.
PLoS One ; 15(7): e0236621, 2020.
Article in English | MEDLINE | ID: covidwho-691350

ABSTRACT

This study employed deep-learning convolutional neural networks to stage lung disease severity of Coronavirus Disease 2019 (COVID-19) infection on portable chest x-ray (CXR) with radiologist score of disease severity as ground truth. This study consisted of 131 portable CXR from 84 COVID-19 patients (51M 55.1±14.9yo; 29F 60.1±14.3yo; 4 missing information). Three expert chest radiologists scored the left and right lung separately based on the degree of opacity (0-3) and geographic extent (0-4). Deep-learning convolutional neural network (CNN) was used to predict lung disease severity scores. Data were split into 80% training and 20% testing datasets. Correlation analysis between AI-predicted versus radiologist scores were analyzed. Comparison was made with traditional and transfer learning. The average opacity score was 2.52 (range: 0-6) with a standard deviation of 0.25 (9.9%) across three readers. The average geographic extent score was 3.42 (range: 0-8) with a standard deviation of 0.57 (16.7%) across three readers. The inter-rater agreement yielded a Fleiss' Kappa of 0.45 for opacity score and 0.71 for extent score. AI-predicted scores strongly correlated with radiologist scores, with the top model yielding a correlation coefficient (R2) of 0.90 (range: 0.73-0.90 for traditional learning and 0.83-0.90 for transfer learning) and a mean absolute error of 8.5% (ranges: 17.2-21.0% and 8.5%-15.5, respectively). Transfer learning generally performed better. In conclusion, deep-learning CNN accurately stages disease severity on portable chest x-ray of COVID-19 lung infection. This approach may prove useful to stage lung disease severity, prognosticate, and predict treatment response and survival, thereby informing risk management and resource allocation.


Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/physiopathology , Deep Learning , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/physiopathology , Tomography, X-Ray Computed/instrumentation , COVID-19 , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Radiologists , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL